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Abstract

In the game-playing technique, one writes a pseudocode game such that an adversary’s advantage
in attacking some cryptographic construction is bounded above by the probability that the game sets
a flag bad. This probability is then upper bounded by making stepwise, syntactical refinements to the
pseudocode—a chain of games. The approach was first used by Kilian and Rogaway (1996) and has been
used repeatedly since, but it has never received a systematic treatment. In this paper we provide one.
We develop the foundations for game-playing, formalizing a general framework for doing game-playing
proofs and providing general and useful lemmas that justify various kinds of game-refinement steps. We
use this to provide simpler and more easily verifiable proofs of some classic existing results, including
the security of the basic CBC MAC. We then extend this to prove a significant new result, namely an
improved security bound for the basic CBC MAC.
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1 Introduction

This paper is about the game-playing approach for analyzing cryptographic constructions. We develop a
theory of game-playing, elevating it from examples to a general and readily usable technique, and we showcase
the use of the method with some illustrative applications. Our work supports the thesis that game-playing,
done right, is a powerful tool, capable of delivering more complete and easily verifiable proofs of strong
results than are obtainable by competing conventional methods.

1.1 The game-playing approach

The first step in our program is to distill from different approaches in the literature a single paradigm to
capture what we want to call game playing. Roughly it works like this. Suppose we wish to upper bound the
advantage of an adversary A in attacking some cryptographic construction. This is a number between 0 and 1
that is computed as the difference between the probabilities that A outputs 1 in two different “worlds.”1 We
proceed as follows:

(1) Write some pseudocode—a game—that captures the behavior of world 1. The game initializes variables,
interacts with the adversary, and then runs some more.

(2) Write another piece of pseudocode—a second game—that captures the behavior of world 0. Arrange
that games 1 and 0 are syntactically identical programs apart from statements that follow the setting of
a flag bad to true.

(3) Invoke a fundamental lemma of game playing to say that, in this setup, the adversary’s advantage is
upper-bounded by the probability that bad gets set (in either game).

(4) Choose one of the two games and slowly transform it, modifying it in ways that increase or leave
unchanged the probability that bad gets set, or decrease the probability that bad gets set by a bounded
amount.

(5) In this way you produce a game chain, ending at some terminal game. Bound the probability that bad
gets set in the terminal game.

It is central to our approach that games are code, not some equivalent functional description; the method,
as we develop it, centers around making disciplined transformations to code to get a cryptographic bound.

1.2 Foundations of game playing

We begin by giving a general framework for game-playing proofs. A game G is formalized as a tuple of
programs, each written in some programming language.2 The programs have a common set of global, static
variables. A game G can be run with an adversary A (look ahead to Figure 2), the adversary calling out
to the programs that are provided. We define what it means for two games to be identical-until-bad -is-set,
where bad is a boolean variable in the games. This is a syntactical condition. We prove a fundamental
lemma for game-playing that says that if two games are identical-until-bad -is-set then the difference in the
probabilities of a given outcome is bounded by the probability that bad gets set (in either game). The
fundamental lemma is the central tool justifying the game-playing technique.

We go on to give some general lemmas and techniques for analyzing the probability that bad gets set.
Principle among these is a simple lemma that lets you change anything you want after the flag bad gets set,
and a lemma that justifies, in some cases, a commonly-used technique of “lazy” coin-flipping. We comment
that while elements of this framework have been used before, nothing has been done with much care or
formality.

1.3 Applications

The applications we provide are chosen to illustrate the applicability of games in a wide variety of envi-
ronments: they range across the standard model and the random oracle model [BR93], and across both

1 Sometimes the advantage might be something else, such as the probability that the adversary forges, but the case we
consider is very common.

2 We actually use pseudocode as our programming language. We could have formally specified the desired programming
language, and there would seem to be some advantages to doing so, but we have not followed that path.
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symmetric and asymmetric cryptographic primitives.

PRP/PRF Switching Lemma. We begin with a motivating observation, due to Tadayoshi Kohno, that
the standard proof of the PRP/PRF switching lemma, as given in [BKR94, HWKS98], contains an error in
reasoning about conditional probabilities. (The lemma says that an adversary that asks at most q queries
can distinguish with advantage at most q2/2n+1 a random permutation on n-bits from a random function of
n-bits to n-bits. It is frequently employed in the analysis of constructions that use blockciphers and model
them as PRPs.) We regard this as evidence that reasoning about cryptographic constructions via conditional
probabilities can be subtle and error-prone even in the simplest of settings, and motivates the use of games
as an alternative. We re-prove the switching lemma with a very simple game-based proof.

CBC MAC. Let Advcbc
n,m(q) denote the maximum advantage that an adversary, restricted to making at

most q oracle queries, can obtain, in distinguishing between (1) the m-block CBC MAC, keyed by a random
permutation on n bits, and (2) a random function from mn-bits to n-bits. A result of [BKR94] says that
Advcbc

n,m(q) ≤ 2m2q2/2n. The constant of 2 was reduced to 1 in [Ma02]. The proof of [BKR94] was complex
and did not directly capture the intuition behind the security of the scheme. In this paper we use games to
give an elementary proof of the m2q2/2n bound that captures this intuition.

We then go on to provide a significant improvement, showing that Advcbc
n,m(q) ≤ cmq2/2n + cm4/22n

for some absolute constant c. (Note this bound is always better, up to a constant factor, than the previous
one, and also that it implies Advcbc

n,m(q) ≤ 2c mq2/2n for m ≤ N1/3.) This result is obtained by using

a carefully chosen game chain to reduce the problem of bounding Advcbc
n,m(q) to bounding something we

call the full collision probability of the CBC MAC and then invoking a lemma of Pietrzak [Pi04], in turn
based on techniques of [DGHKR04], to bound the latter. We note that improving the security bound for
the CBC MAC has been a well-known open problem for ten years.

The quantitative difference in the security guaranteed by these bounds can be significant when dealing
with long messages. For example, if n = 64 and messages are 128 KBytes (m = 214) then a m2q2/2n bound
ceases to justify the CBC MAC at around q = 218 messages, while our bound justifies the CBC MAC to
around q = 225 messages. (This discussion ignores the constant factors in the bounds.)

OAEP. Finally, we give an example of using games in the public-key, random-oracle setting by proving
that OAEP [BR94] with any trapdoor permutation is an IND-CPA secure encryption scheme. The original
proof [BR94] of this (known) result was hard to follow or verify; the new proof is simpler and clearer, and
illustrates the use of games in a computational rather than information-theoretic setting.

1.4 Related work

Prior use of games. The first use of the game-playing technique is due to Kilian and Rogaway [KR96],
who used the approach to analyse DESX. The method soon became the favored one of Rogaway, who
used it, along with coauthors, in some ten or so subsequent papers [BKR98, BR00, RBB01, BR02, BRS02,
R02, HR03, BRW04, HR04, R04]. Shoup was the first to analyse a public-key construction using a game
chain [Sh00], and game-playing soon became a favored technique of his, too [SS00, Sh01a, Sh01b, CS02,
CS03a, CS03b, GS04]. Nowadays many further authors develop their proofs in terms of game chains; see
[BBKN01, BCP03, BK05, Bo01, DFKY03, FOPS04, GMMV03, KD04, PP04] as a sample.

A notable difference between the Rogaway and Shoup approaches to games is that in the former, games
are seen as pseudocode objects that set flags and are formally manipulated. This is the viewpoint that the
present paper develops and advocates, because we think that it gives rise to more structured and easily-
verified proofs, and we believe that it will engender a richer and more easily applied theory. At the same
time, we see the differences in the approaches to date (a distinction we are only now introducing) as being
somewhat a matter of taste.

Alternatives to games. With motivation similar to our own, Maurer develops a framework for the anal-
ysis of cryptographic constructions and applies it to the CBC MAC and other examples [Ma02]. Vaudenay
has likewise developed a general framework for the analysis of blockciphers and blockcipher-based construc-
tions, and has applied it to the encrypted CBC MAC [Va01]. Neither Maurer’s nor Vaudenay’s approach are
widely employed, and neither is geared towards making stepwise, code-directed refinements for computing a
probability.
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Making game-playing rigorous. A more limited and less formal version of our fundamental lemma
(Lemma 5) appears in [BKR98, Lemma 7.1]. A lemma by Shoup [Sh01a, Lemma 1] functions in a similar
way.

CBC. Works like [PR00, Va01, BR00] analyse variants of the basic CBC MAC. Their methods do not seem
to apply to the basic CBC MAC itself, and in any case they all get bounds of (a constant times) m2q2/2n.

Dodis, Gennaro, H̊astad, Krawczyk, and Rabin [DGHKR04] provide a bound on the collision probabil-
ity CP

∗(n, m), defined as the maximum, over all pairs of distinct messages of exactly m blocks, that the
CBC MACs of these messages, taken over a random permutation, coincide. This does not appear to be
immediately useful towards bounding Advcbc

n,m(q), but we reduced the latter task to bounding a related
probability FCP(n, m), defined in Section 6, that, as indicated above, was analyzed by Pietrzk [Pi04], based
on techniques of [DGHKR04]. We note that a strong bound on CP(n, m), defined just as CP

∗(n, m) but for
messages of at most m blocks rather than exactly m blocks, would immediately yield not only a bound on
FCP(n, m), but also an improved bound on Advecbc

n,m (q) (the advantage of the encrypted CBC MAC, defined
analogously to that for the basic CBC MAC), for the latter is simply q2 ·CP(n, m), a fact easily shown using
games. At the time of writing of this draft, no bound on CP(n, m) analogous to that on CP

∗(n, m) has been
shown.

An improved bound on the collision probability of the CBC MAC had been claimed, prior to [DGHKR04],
by [JJV02], and an earlier attempt of ours at an improved bound for the CBC MAC had been to use the
ideas of [JJV02]. However, it turns out that the proof in [JJV02] was wrong, and so also was our attempt
at an extension. We thank Krzysztof Pietrzak and Shai Halevi for pointing this out. See Appendix B for
further explanations and discussion.

Concurrent work. Shoup has independently and contemporaneously prepared a manuscript on the game-
playing technique [Sh04]. It is more pedagogically-oriented than this paper, employing simpler examples and
focusing on known, classroom-friendly results. Shoup makes no attempt to develop a “theory” for game
playing beyond [Sh01a, Lemma 1] that we mentioned above and reappears here. As with us, one of Shoup’s
examples is the PRP/PRF switching lemma.

1.5 Discussion and outline

Why games? We advocate the game-playing paradigm for several reasons. First, we believe that the
approach can lead to more easily verified, less error-prone proofs than those grounded in more conventional
probabilistic language. In our opinion, many proofs in cryptography are essentially unverifiable, and we
view well-executed game-playing arguments as an approach to help remedy this problem. Second, we believe
that game-playing is very widely applicable. Games can be used in the standard model, the random-oracle
model, the ideal-blockcipher model, and more; they can be used symmetric settings, public-key settings,
and further trust models; they can be used for simple schemes (eg, justifying the Carter-Wegman MAC)
and complex protocols (eg, proving the correctness of a key-distribution protocol). Third, game-playing is
easily applied and quickly mastered: one needn’t spend weeks to learn some supporting theory. Indeed the
second author has been using game-playing in his graduate crypto class for years, increasingly employing it
to provide a unifying structure for proofs. Students do well at following game-based proofs, perhaps because
the incremental character of constructing a game chain meshes well with the mechanics of a blackboard
talk, and perhaps too because the approach is relatively “forgiving” if a student misses some particular step.
Finally, as we demonstrate, the game-playing technique can lead to significant new results that would seem
to be hard to get to using any other technique.

Why should this work? It is fair to ask if anything is actually “going on” when using games—couldn’t
you recast everything into more conventional mathematical language and drop all that ugly pseudocode?
Our experience is that it doesn’t work to do so. The kind of probabilistic statements and thought encouraged
by the game-playing paradigm seems to be a better fit, for many cryptographic problems, than that which is
encouraged by (just) defining random-variables, writing conventional probability expressions, conditioning,
and the like. The power of the approach ultimately stems from the fact that pseudocode is the most precise
and easy-to-understand language we know for describing the sort of probabilistic, reactive environments
encountered in cryptography, and by remaining in that domain to do ones reasoning you are better able to
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see what is happening, manipulate what is happening, and validate the changes. In short, form matters.

Challenges. The extent to which games deliver easily verifiable proofs depends on the way they are
used. One should make small, easily-checked adjustments as one moves from one game to the next; longer
game chains with small changes between adjacent games are easier to verify than short chains with big
jumps between adjacent games. This can be tedious and lead to lengthy proofs. To be fully rigorous, each
adjustment to a game should be justified by a formally proven rule—the sort of rule that an optimizing
compiler might employ to justify reusing a register or doing some code motion. There is not yet a rich
enough theory to support all of the modifications to the code that you might want to make in a game. We
believe that this will get better in time; this paper is one step.

Outline. We begin with the PRP/PRF switching lemma as a motivating example and gentle introduction
to games. Next, in Section 3, we provide a general framework for game playing, where we state and prove the
fundamental lemma. In Section 4 we catalogue and justify some techniques for manipulating and refining
games. In Section 5 we provide a simple, game-based proof of security of the CBC MAC with the standard
(known) bound, and in Section 6 we provide the proof of the improved bound. Finally Section 7 provides a
simple game-based proof of the result of [BR94] that OAEP with any trapdoor permutation is IND-CPA.

Document history. 2004-11-11: First public presentation (Luminy, France). 2004-11-30: Version 0.1
posted to eprint. 2004-12-02: Version 0.2 (restructure, clarify related work). 2004-12-07: Version 0.3
(temporarilly retract improved CBC bound due to bug). 2004-12-11: Version 0.4 (reinstate improved CBC
bound).

2 The PRP/PRF Switching Lemma

Let Perm(n) be the set of all permutations on {0, 1}n. Let Rand(n) be the set of all functions from {0, 1}n

to {0, 1}n. By Af⇒1 we refer to the event that adversary A, equipped with an oracle f , outputs the bit 1. In
what follows, assume that π is randomly sampled from Perm(n) and ρ is randomly sampled from Rand(n).

Lemma 1 [PRP/PRF Switching Lemma] Let n ≥ 1 be an integer. Let A be an adversary that asks
at most q oracle queries. Then |Pr[Aπ⇒ 1]− Pr[Aρ⇒ 1]| ≤ q(q − 1)/2n+1 .

The result is folklore, and is used extensively. Its value is the following. In analyzing a blockcipher-based
construction C we need to bound how well an adversary A can do in breaking C[π], for a random permu-
tation π on n bits. But it is often technically easier to upper bound how well the adversary can do in
attacking C[ρ], for a random function ρ from n bits to n bits. Doing this suffices because we can then apply
the Switching Lemma to conclude that the difference is small.

In this section we point to some subtleties in the “standard” proof, as given for example in [HWKS98,
BKR94], of this apparently simple result, showing that one of the claims made in these proofs is incorrect.
We then show how to prove the lemma using games. This example provides a gentle introduction to the
game-playing technique and a warning about perils of following ones intuition when dealing with conditional
probability in provable-security cryptography.

The standard analysis proceeds as follows. Let Coll (“collision”) be the event that an adversary, inter-
acting with an oracle ρ, asks distinct queries X and X ′ that return the same answer. Let Dist (“distinct”)
be the complementary event. Now

Pr[Aπ⇒ 1] = Pr[Aρ⇒ 1 | Dist] (1)

since a random permutation is indistinguishable from a random function in which one observes no collisions.
Letting x be this common value and y = Pr[Aρ⇒ 1 | Coll] we have

|Pr[Aπ ⇒ 1]− Pr[Aρ⇒ 1]| = |x− x Pr[Dist]− y Pr[Coll]| = |x(1− Pr[Dist])− y Pr[Coll]|

= |x Pr[Coll]− y Pr[Coll]| = |(x− y) Pr[Coll]| ≤ Pr[Coll]

where the final inequality follows because x, y ∈ [0, 1]. One next argues that Pr[Coll] ≤ q(q− 1)/2n+1 and so
the Switching Lemma follows.

Where is the error in the simple proof above? It’s at (1); it needn’t be the case that Pr[Aπ ⇒ 1] =
Pr[Aρ⇒ 1 | Dist], and the sentence we gave by way of justification was mathematically meaningless. Here is
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Initialize On query f(X) Game S1

100 bad ← false 110 Y
$

←{0, 1}n

101 for X ∈ {0, 1}n do π(X)← undefined 111 if Y ∈ Range(π) then bad ← true , Y
$

←Range(π)

112 return π(X)← Y omit ↑ for Game S0

Figure 1: Games used in the proof of the Switching Lemma.

a simple example to demonstrate that Pr[Aπ ⇒ 1] can be different from Pr[Aρ⇒ 1 | Dist]. Let n = 2, name

the four points of {0, 1}2 as 0, 1, 2, and 3, and consider the following adversary A with oracle f :

if f(0) = 0 then return 1 else if f(1) = 1 then return 1 else return 0.

Then Pr[Aπ ⇒ 1] = 5/12 ≈ 0.42 because there are 12 possibilities for π(0)π(1) and A returns 1 for five of
them: 01, 02, 03, 21, 31. On the other hand, Pr[Aρ⇒1 | Dist] = Pr[Aρ⇒1∧Dist]/ Pr[Dist] = (6/16)/(13/16) =
6/13 ≈ 0.46 because there are 16 possible values ρ(0)ρ(1) and Aρ⇒ 1 ∧ Dist is true for six of them, 00, 01,
02, 03, 21, 31, while Dist is true for 13 of them: 00, 01, 02, 03, 10, 12, 13, 20, 21, 23, 30, 31, 32.

Notice that the number of oracle queries made by the adversary of our counterexample varies, being either
one or two, depending on the reply it receives to its first query. As we show in Appendix A (this was also
pointed out by Kohno), if A always makes exactly q oracle queries (regardless of A’s coins and the answers
returned to its queries) then (1) is true. Since one can always first modify A to make exactly q queries, we
would be loth to say that the proofs in [HWKS98, BKR94] are incorrect, but the authors make claim (1),
and view it as “obvious,” without restricting the adversary to exactly q queries, masking a subtlety that is
not apparent at a first (or even second) glance.

The fact that one can write something like (1) and people assume this to be correct, and even obvious,
suggests to us that the language of conditional probability may often be unsuitable for thinking about and
dealing with the kind of probabilistic scenarios that arise in cryptography. Games may more directly capture
the desired intuition. Let’s use them to give a correct proof. Assume without loss of generality that A never
asks an oracle query twice.

We imagine answering A’s queries by running one of two games. Instead of thinking of A interacting

with a random permutation oracle π
$

← Perm(n) think of A interacting with the Game S1 shown in Figure 1.

Instead of thinking of A interacting with a random function oracle ρ
$

← Rand(n) think of A interacting with
the game S0 shown in the same figure. Game S0 is game S1 without the shaded statement.

In both games S1 and S0 we start off performing the initialization step, setting a flag bad to false and
setting a variable π to be undefined at every n-bit string. (We will soon establish conventions that eliminate
the need to write these steps.) As the game runs, we fill-in values of π(X) with n-bit strings. At any point
in time, we let Range(π) be the set of all n-bit strings Y such that π(X) = Y for some X . Let Range(π) be
the complements of this set relative to {0, 1}n.

Notice that the adversary never sees the flag bad . The flag will play a central part in our analysis, but it
is not something that the adversary can observe. It’s only there for our bookkeeping. What does adversary A
see as it plays game S0? Whatever query X it asks, the game returns a random n-bit string Y . So game S0

perfectly simulates a random function ρ
$

←Rand(n) (remember that the adversary isn’t allowed to repeat
a query) and Pr[Aρ ⇒ 1] = Pr[AS0 ⇒ 1]. Similarly, if we’re in game S1, then what the adversary gets in
response to each query X is a random point Y that has not already been returned to A. The behavior of
a random permutation oracle is exactly this, too. (This is guaranteed by what we will call the “principle of
lazy sampling.”) So Pr[Aπ ⇒ 1] = Pr[AS1 ⇒ 1]. At this point we have that |Pr[Aπ ⇒ 1] − Pr[Aρ ⇒ 1]| =
|Pr[AS1⇒1]−Pr[AS0⇒1]|. We next claim that |Pr[AS1⇒1]−Pr[AS0⇒1]| ≤ Pr[AS0 sets bad ]. We refer to
the lemma that makes this step possible as the fundamental lemma of game playing. The lemma says that
whenever two games are written so as to be syntactically identical except for things that immediately follow
the setting of bad , the difference in the probabilities that A outputs 1 in the two games is bounded by the
probability that bad is set in either game. (It actually says something a bit more general, as we will see.) So
we have left only to bound Pr[AS0 sets bad ]. By the union bound, the probability that a Y will ever be in
Range(π) at line 111 is at most (1 + 2 + · · ·+ (q − 1))/2n = q(q − 1)/2n+1. This completes the proof.
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inp
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Initialize
 A
 Finalize


P
1


outcome
param


P
n

 ...


G

game
Global variables:


   a, b, c,
 …


Figure 2: Running a game G with an adversary A. The game—the box that surrounds A—consists of pseudocode
procedures Initialize, P1, . . . , Pn, and Finalize. The adversary A receives an (optional) input from the game, interacts
with its oracles P1, . . . , Pn, and produces an output. The outcome of the game is determined by Finalize.

3 The Game-Playing Framework

3.1 Game syntax

A program P is a finite, valid sequence of statements written in some programming language, L. We identify
a program with its parse tree. Programs take zero or more strings as input and produce zero or more strings
as output. We only consider programs that always terminate. We will not formally specify the programming
language L; our language will be “pseudocode” and we will keep it simple enough that there won’t be any
ambiguity about how to run a program. Certainly one could rigorously define the programming language that
one wanted to use for specifying games, and one could then endow it with a proper execution semantics, but
this won’t be necessary for us. We will, however, need to explain some basic characteristics and conventions
for our pseudocode.

We include the usual repertoire of constructs one finds in a procedural programming language: variables,
assignment statements, if-statements, for-statements, and so forth. We also include a sample-then-assign

operator
$

← where X
$

←X means to select a random element from the finite set X (all elements equally
probable) and assign the resulting value to the variable X . This is the only source of randomness in programs,
so probabilities are taken over the choices associated to sample-then-assign statements. Variables in programs
are understood to be static and global: their values “hang around” from call to call and have a scope of all
programs in an associated game, which we will define shortly. We’ll assume a relatively rich set of types:
booleans, integers, strings, arrays (including arrays indexed by strings), finite sets, and partial functions from
finite sets to finite sets. We won’t explicitly declare variables, but each variable will have a fixed type, that
type being clear from the context. We’ll use a comma as a statement separator, and S, S′ is a statement
when S and S′ are. The empty statement ε is also a statement, and we regard S and S, ε as the same.
We use indentation to indicate grouping. Boolean variables are automatically initialized to false and other
variables are initially everywhere undefined (an array is undefined for all possible indices and a function is
undefined at all domain points).

Definition 2 [Games] A game G = (Initialize, P1, P2, . . . , Pn,Finalize) is a sequence of programs.

Programs P1, . . . , Pn are the oracles of the game. If we omit specifying Initialize or Finalize it means that
the program does nothing: it computes the identity function. We let param denote the input to Initialize
and we let inp denote its output. We let out be the input to Finalize and we let outcome be its output.
If we describe a game by giving a single unlabeled program, that program is the Finalize program. For all
of our games, the Initialize and Finalize programs will have those names, but we will choose suggestive
names for P1, . . . , Pn. To see examples of games, look ahead to any of the games appearing later in this
paper, which we name as in C4 or S1.

3.2 Running a game

To run a game G we need an adversary A to interact with it. See Figure 2. An adversary is a probabilistic
algorithm equipped with the ability to query some number n ≥ 0 of oracles. For convenience, we assume
that an adversary is described by a program—in particular, its source of randomness is sample-then-assign
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statements X
$

←X where the adversary has constructed the finite set X using the constructs of the pro-
gramming language.3 The pair consisting of a game G and an adversary A is called a runnable game. We
will refer to a runnable game between G and A by writing either GA or AG. We’ll use the first notation if
we want to emphasize what the game is doing, and we’ll use the second notation if we want to emphasize
what the adversary is doing.

To run G = (Initialize, P1, P2, · · · , Pn,Finalize) with A and string parameter param , begin by calling
program Initialize with input param . (In the asymptotic setting, this might be a security parameter k. For
all of our non-asymptotic examples param is empty.) We now run A, passing it any (string) return value inp
produced by Initialize. When adversary A calls its ith oracle with a given string, we pass that string to
program Pi and run it. We return to A whatever string the program Pi says to return. We assume that an
adversary eventually terminates, regardless of what it receives from its environment. (That is, adversary A
should terminate even if we were to run it in some other, arbitrary game.) When A halts, possibly with
some output out , we call Finalize, providing it any output produced by A. The outcome of the game is
the string value returned by Finalize. The outcome of a game can be regarded as a random variable, the
randomness taken over the sample-then-assign statements of the adversary A and the game G. Often the
outcome of the game is the return value of A, procedure Finalize not doing anything beyond passing on its
input as its output.

We write Pr[GA⇒ 1] for the probability that the outcome of game G is 1 when we run GA. We say that
games G and H are equivalent if for any adversary A it is the case that Pr[GA⇒ 1] = Pr[HA⇒ 1].

We write Pr[AG⇒ 1] to refer to the probability that the adversary A outputs 1 when we run GA. The
advantage of A in distinguishing games G and H is the real number Advdist

G,H(A) = Pr[AG⇒1]−Pr[AH⇒1].
We say that games G and H are (perfectly) adversarially indistinguishable if for any adversary A it is the
case that Pr[AG⇒ 1] = Pr[AH⇒ 1].

3.3 Identical-until-bad-is-set games

A boolean variable bad in a game G is called a flag if starts off as false and changes values at most once:
once a flag becomes true, it can never revert to false. We are interested in programs that are syntactically
identical until a flag bad has been set to true. The formal definition is as follows.

Definition 3 [Identical-until-bad-is-set] Let P and Q be programs and let bad be a flag in each of them.
Then P and Q are identical-until-bad-is-set if their parse trees are the same except for the following:
wherever program P has a statement bad ← true, S in its parse tree, program Q has at the corresponding
position of its parse tree that statement bad ← true, T for a T that is possibly different from S. Games
G = (Initialize, P1, . . . , Pn,Finalize) and H = (Initialize′, Q1, . . . , Qn,Finalize′) are identical-until-

bad-is-set if each of their corresponding programs are identical-until-bad -is-set.

As an example, games S0 and S1 from Figure 1 are identical-until-bad -is-set. For one of these games, S0,
we have the empty statement following bad ← true in the parse tree of S0; for S1, we have the statement

Y
$

← Range(π). Since this is the only difference in the programs, the games are identical-until-bad -is-set.
We’ll also say that G and H are are identical-until-bad -is-set if one game has the statement if bad then S

where the other has the empty statement ε. One can consider if bad then S to be the same as
if bad then bad ← true, S and one can consider the empty statement ε to be the same as if bad then bad ←
true, ε and under this convention the games are identical-until-bad -is-set under the given definition.

We write Pr[GA sets bad ] to refer to the probability that the flag bad is true at the end of the execution
of the runnable game GA, when Finalize terminates. The following is easy to see:

Proposition 4 Identical-until-bad -is-set is an equivalence relation on games.

3.4 The fundamental lemma

The lemma that justifies the game-playing technique is the following.
3 This definition excludes the possibility of an adversary being able to to flip a coin with bias p = 1/π, for example. It is

possible to show that an optimal adversary for a game G need not flip coins with irrational biases; in that sense, assuming an
adversary’s source of randomness to be to be sample-then-assign statements is without loss of generality.
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Lemma 5 [Fundamental lemma of game-playing] Let G and H be identical-until-bad -is-set games,
and let A be an adversary. Then

Pr[GA⇒ 1]− Pr[HA⇒ 1] ≤ Pr[GA sets bad ] .

More generally, |Pr[GA⇒1]−Pr[HA⇒1]| ≤ Pr[IA sets bad ]| for any identical-until-bad -is-set games G, H, I.

Proof of Lemma 5: Ignore for now the second statement in the lemma; it will follow immediately from
the first statement by using Proposition 6.

We have assumed that the adversary and all programs comprising a game always terminate, and so there ex-
ists a smallest number b such that A and GA and GB perform no more than b sample-then-assign statements,
each of these sample-then-assign statements sampling from a set of size at most b. Let C = Coins(A, G, H) =
[1 .. b!]b be the set of b-tuples of numbers, each number between 1 and b!. We call C the coins for (A, G, H). A
random execution of GA can be determined in the following way. First, draw a random sample c = (c1, . . . , cb)
from C. Then, using c, deterministically execute GA as follows: On the ith sample-then-assign statement,

Xi
$

←{X0, . . . , Xni−1}, let Xi be Xci mod ni
This way to perform sample-then-assign statements is done re-

gardless of whether A is the one performing the sample-then-assign statement or one of the programs from G
is performing the statement. Now notice that ni divides b! and so the mechanism above will return a uniform
point Xi from {X0, . . . , Xni−1}. The return values for each sample-then-assign statement are independent,
so we have properly simulated GA using the random point from C and no other source of randomness.
Similarly, starting from a random point (c1, . . . , cb) from C we can run HA without any further coins by

performing the ith sample-then-assign statement Xi
$

← {X0, . . . , Xni−1} statement as before. From now on
in the proof, assume that we realize GA and HA as we have described, by sampling (c1, . . . , cb) from the
coins C for (A, G, H). We let GA(c) and HA(c) denote the run of G and H, respectively, with A and the
indicated coins c ∈ C.

Let CGone = {c ∈ C : GA(c) ⇒ 1} be the coins that cause GA to output 1, and similarly define CH one

for HA. Partition CGone into CGbad
one and CGgood

one according to whether bad is set to true in the run, and
similarly define CH bad

one and CH good
one . Define CGbad = {c ∈ C : GA(c) sets bad }. Observe that because

games H and G are identical-until-bad -is set games, an element c ∈ C is in CG good
one iff it is in CH good

one , so
|CGgood

one | = |CH good
one |. Thus

Pr[GA⇒ 1]− Pr[HA⇒ 1] =
|CGone| − |CH one|

|C|
=
|CGbad

one |+ |CGgood
one | − |CH good

one | − |CH bad
one |

|C|

=
|CGbad

one | − |CH bad
one |

|C|
≤
|CGbad

one |

|C|
≤
|CGbad|

|C|
= Pr[GA sets bad ] .

The final claim in the lemma, that |Pr[AG ⇒ 1] − Pr[AH ⇒ 1] ≤ Pr[AI sets bad ]| when G, H, and I are
identical-until-bad -is-set, follows directly from Lemma 6 (to be given later). That lemma ensures that
Pr[GA sets bad ] = Pr[HA sets bad ] = Pr[IA sets bad ] and so Pr[AG ⇒ 1] − Pr[AH ⇒ 1] ≤ Pr[AI sets bad ]
and, by symmetry, Pr[AH⇒ 1]− Pr[AG⇒ 1] ≤ Pr[AI sets bad ]. This completes the proof.

Terminology. The power of the game-playing technique stems, in large part, from our ability to incre-
mentally rewrite games, constructing chains of games that are at the center of a game-playing proof. Using
the fundamental lemma, you first arrange that the analysis you want to carry out amounts to bounding
ε = Pr[G1A sets bad ] for some first game G1 and some adversary A.4 You want to bound ε as a function of
the resources expended by A. To this end, you modify the game G1, one step at a time, constructing a chain
of games G1 −→ G2 −→ G3 −→ · · · −→ Gn. Game G1 is the initial game and game Gn is the terminal
game. Game G1 is played against A; other games may be played against other adversaries (though they
usually are not). Consider a transition GA → HB . Let pG = Pr[GA sets bad ] and let pH = Pr[HB sets bad ].
We want to bound pG in terms of pH . (1) Sometimes we show that pG ≤ pH . In this case, the transfor-
mation is said to be safe. A special case of this is when pG = pH , in which case the transformation is said
to be conservative. (2) Sometimes we show that pG ≤ pH + ε or pG ≤ c · pH for some particular ε > 0
or c > 1. Either way, we call the transformation lossy. For an additive lossy transformation, ε is the loss

4 In fact, a game chain may be used also for this first phase, before we apply the fundamental lemma; an example is given
in our OAEP analysis.
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term; for a multiplicative lossy transformation, c is the dilation term. When a chain of safe and additively
lossy transformations is performed, a bound for bad getting set in the initial game is obtained by adding up
all the loss terms and the bound for bad getting set in the terminal game. If there are multiplicative losses
then we bound bad getting set in the initial game in the natural way. We use the words conservative, safe,
and lossy to apply to pairs of games even in the absence of an adversary: the statement is then understood
to apply to all adversaries, or to all adversaries with understood resources. For example, the transformation
G→ H is conservative if for all adversaries A we have that Pr[GA sets bad ] = Pr[HA sets bad ].

4 Game-Rewriting Techniques

In this section we name, describe, and justify some game-transformation techniques that seem universally
useful. Our enumeration is not comprehensive, only aiming to hit some of the most interesting or widely
applicable techniques. We suggest that a reader might want to skip Sections 4.2–4.3 on a first reading.

4.1 After bad is set, nothing matters

One of the most common manipulations of games is to modify what happens after bad gets set to true. Quite
often the modification consists of dropping some code, but it is also fine to insert alternative code. Any
modification following the setting of bad is conservative. The formal result is as follows.

Proposition 6 [After bad is set, nothing matters] Let G and H be identical-until-bad -is-set games.
Let A be an adversary. Then Pr[GA sets bad ] = Pr[HA sets bad ].

Proof of Proposition 6: Using the definition from the proof of Lemma 5, fix coins C = Coins(A, G, H)
and execute GA and HA in the manner we described using these coins. Let CGbad ⊆ C be the coins that
result in bad getting set to true when we run GA, and let CH bad ⊆ C be the coins that result in bad getting
set to true when we run HA. Since G and H are identical-until-bad-is-set, each c ∈ C causes bad to be set
to true in GA iff it causes bad to be set to true in HA. Thus CGbad = CH bad and hence |CGbad| = |CH bad|
and |CGbad|/|C| = CH bad|/|C|, which is to say that Pr[GA sets bad ] = Pr[HA sets bad ].

4.2 Coin fixing

Consider a game G with an oracle P. The adversary A hopes, running with G, to set bad . It adaptively
asks P strings X1, . . . , Xq getting back strings Y1, . . . , Yq . We would like to change G to a different game H in
which X1, . . . , Xq, Y1, . . . , Yq are all fixed, constant strings. We do this—when we can—using the coin-fixing
technique. It stems from a classical method in complexity theory to eliminate coins [Ad78], hardwiring them
in, as in the proof that BPP ⊆ P/poly.

One can’t always apply the coin-fixing; we now describe a sufficient condition in which one can. We first
describe the basic setup. Suppose that the runnable game GA has the following characteristics. There is a
single oracle P There is no input param supplied to A and no output out received from it. The game contains
a flag bad . Adversary A asks, in sequence, exactly q string queries to P, which the program stores in write-
once variables X1, . . . , Xq ; and the program computes in response write-once string variables Y1, . . . , Yq ,
providing these answers, one-by-one, to A. That there is a single oracle and that Xi and Yi are in write-once
variables are without loss of generality in our current context. Let C be a set of (X1, . . . , Xq, Y1, . . . , Yq)
tuples such that every vector of queries X1, . . . , Xq and their responses Y1, . . . , Yq that could arise in an
execution of GA occurs in C. We call C a query/response set for GA. A query/response set does not need to
be the smallest set that includes all possible queries and their response, it only has to include it.

Let Y be the set of all variables Y 6∈ {X1, . . . , Xq, Y1, . . . , Yq} in the game G for which some Yi de-
pends on Y (here we speak of “depends on” in the information-flow sense of programming-language theory).
We say that GA is oblivious if the variable bad does not depend on any variable in Y .

Informally, a game is oblivious if it doesn’t use anything about how the Yi-values were made in order to
compute bad : no variable that influenced a Yi-value (excluding Xi- and Yi- values) also influences bad . A
special case of an oblivious games is when the vector (Y1, . . . , Yq) is chosen at random from some finite set V
Note that in an oblivious program the Xi and Yi values themselves may influence bad .
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Given an oblivious game GA, a query/response set C for GA, and a point C = (X1, . . . , Xq, Y1, . . . , Yq) ∈ C,
we form a new game HC as follows. Game HC is like G except it has no oracle P. Each (R-value) use of
an Xi or Yi in G is replaced by the corresponding constant Xi or Yi. Each (R-value) use of a variable Y ∈ Y
is replaced by an arbitrary constant of the correct type. At the beginning of the Finalize program for HC

a for-loop is executed simulating the arrival of the sequence of P-queries X1, . . . , Xq and doing whatever
program P would have done on receipt of each of these queries (apart from the changes we have already
mandated). This completes the description of HC.

Let H = CoinFix
C
A(G) be HC for the lexicographically first C ∈ C that maximizes Pr[HC

A sets bad ]. Since
HA no longer depends on A, we may omit mention of it and still have a runnable game. We can now state
the coin-fixing lemma.

Lemma 7 [Coin-fixing technique] Let GA be an oblivious game and let C be a query/response set for
it. Let H = CoinFix

C
A(G). Then Pr[GA sets bad ] ≤ Pr[H sets bad ].

Proof of Lemma 7: Using the technique of Lemma 5, define coin sets for the runnable game GA as
follows: let CA be coins for running A; let CY be coins for sample-then-assign statements to variables Yi and
variables in Y ; and let CB be any further coins used by G. Each of these is a finite set, and all that is required

is that by choosing one random point from each of these sets, cA
$

← CA, cY
$

← CY , and cB
$

← CB , one can
deterministically run GA, determining a final value for bad for this run, which we’ll denote bad(cA, cY , cB).
Coins cB also determine an execution of H, determining, in particular, if bad gets set there: call the final
value of that variable bad(cB). Since some number in a set of real numbers must be at least as large
as the average, there must exist a (cA, cY) ∈ CA × CY such that PrcA,cY ,cB

[GA(cA, cY , cB) sets bad ] ≤
PrcB

[GA(cA, cY, cB) sets bad ]. Let C = (X′1, . . . , X
′
q, Y

′
1, . . . , Y

′
q) be the queries and responses that result from

running GA with coins cA, cY. Our notion of obliviousness ensures that PrcB
[GA(cA, cY, cB) sets bad ] =

PrcB
[HC(cB) sets bad ], with notation as in the paragraph preceding the lemma. This is because coins C

result in oracle queries X
′
1, . . . , X

′
q, responses Y′1, . . . , Y

′
q), and unspecified additional values to variables, and

the execution of HC proceeds identically apart for “incorrect” values for variables in Y and the variables
these impact, but, by definition of obliviousness, these incorrect values are not relevant when it comes to
determining whether or not bad gets set. Now PrcB

[HC(cB) sets bad ] ≤ Pr[H sets bad ] because C ∈ C must
be in the query/response set by our definition of it. This completes the proof.

Coin-fixing is our primary method for eliminating adversarial adaptivity. Many times in analyzing a game,
adaptivity is at the center of the analytic difficulty. It is worth pointing out that in using coin-fixing to
banish adaptivity, one never establishes that the best non-adaptive adversary for the original game—or any
other game—does no better than the best adaptive one. This may be false (or at least not ostensibly true)
even though the coin-fixing technique can be used to expunge adaptivity in the analysis.

4.3 Lazy sampling

Instead of making random choices up front, it is often convenient rewrite a game so as to delay making
random choices until they are actually needed. We call such “just-in-time” flipping of coins lazy sampling.

As a simple but frequently used example—let’s call it example 1—consider a game that surfaces to the
adversary a random permutation π on n bits. One way to realize this game is to choose π at random from
Perm(n) during Initialize and then, when asked a query X ∈ {0, 1}n, answer π(X). The alternative, lazy,
method for implementing π would start with a partial permutation π from n bits to n bits that is everywhere
undefined. When asked a query X not yet in the domain of π, the oracle would choose a value Y randomly
from the co-range of π, define π(X)← Y , and return Y .

You can think of the current partial function π as imposing the “constraint” that π(X) 6∈ Range(π) on
our choice of π(X). We choose π(X) at random from all points respecting the constraint.

For example 1, it seems obvious that the two ways to simulate a random permutation are equivalent.
(Recall that equivalent is a technical term we have defined: it means that no adversary can distinguish, with
any advantage, which of the two games it is playing.) But lazy sampling methods can get more complex
and prospective methods for lazy sampling often fail to work. One needs to carefully verify any prospective
use of lazy sampling. To see this, consider the following example 2. The game provides the adversary with
permutations π1, π2 : {1, 2, 3} → {1, 2, 3} subject to the constraint that π1(x) 6= π2(x) for all x ∈ {1, 2, 3}.
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Initialize Game EagerF

100 (f1, . . . , fk)
$

←F

On query fi(x)
110 return fi(x)

Initialize Game LazyF

200 fi : X → Y is everywhere undefined for each i ∈ [1 .. k]

On query fi(x)
210 if fi(x) then return fi(x)

211 return fi(x)
$

←Ansf1,...,fk
F (i, x)

Figure 3: Eager and lazy sampling games associated to F , where F is given by constraint function F .

The eager way to simulate the pair of oracles is to choose π1, π2 uniformly at random from the set of pairs
of permutations that obey the constraint. A possible lazy way, where we answer an oracle query with a
random point not violating any constraint on already-defined points, may proceed like this. On query π1(1)
we would return a random point in {1, 2, 3}. Say this is 1. On query π1(2) we would return a random point
in {2, 3}, say 2. On query π1(3) we would be forced to return 3. On query π2(1) we would return a random
point in {2, 3}, say 2. On query π2(2) we would return a random point in {1, 3}, say 1. But now we are
stuck, for on query π2(3) there is nothing correct to return. Here lazy sampling, at least in the way we just
implemented it, didn’t work.

We now say, more precisely, what we mean by lazy sampling, and then give some conditions under which
it works, in particular justifying the first example above while identifying what makes the second one fail.

Let X ,Y be finite, non-empty sets. A constraint function with locality parameter t is a function F that
assigns a boolean output to any input of the form i1, x1, y1, . . . , is, xs, ys, where ij ∈ [1 .. k], xj ∈ X , yj ∈ Y
and s ∈ [1 .. t]. Let P = rand(X ,Y) be the set of all partial functions from X to Y and let T = Rand(X ,Y)
be the set of all total functions from X to Y . We say that a set F of k-vectors of functions in T is described
by F if F is exactly the set of all (f̄1, . . . , f̄k) ∈ T k such that

(∀s ≤ t) (∀i1, . . . , is ∈ [1 .. k]) (∀x1, . . . , xs ∈ X )
[
F (i1, x1, f̄i1(x1), . . . , is, xs, f̄is

(xs)) = 1
]

.

The framework we consider is that we provide adversary A with a sequence of oracles (f1, . . . , fk)
$

←F drawn
at random, with uniform distribution, from a set F that is described via a constraint function.

The examples we have given above can be put into this framework. For example 1 we have X =
Y = {0, 1}n and for example 2 we have X = Y = {1, 2, 3}. The constraint function for example 1 has
locality t = 2 and is defined by F1(i, x1, y1, i, x2, y2) = 1 iff (x1 6= x2)⇒ (y1 6= y2). The constraint function
for example 2 has locality t = 2 and is defined by F3(1, x1, y1, 2, x2, y2) = 1 iff (a) (x1 = x2) ⇒ (y1 6= y2)
and (b) F1(i, x, y, i, x′, y′) = 1 for all i ∈ {1, 2}.

Now we explain how lazy sampling works. If f̄ ∈ T is consistent with f ∈ P (meaning the two are equal
on all points where partial function f is defined) then we write f̄ ≥ f . For f1, . . . , fk ∈ P , i ∈ [1 .. k], x ∈ X ,
and y ∈ Y let

Extf1,...,fk

F (i, x, y) = { (f̄1, . . . , f̄k) ∈ F : f̄j ≥ fj (1 ≤ j ≤ k) and f̄i(x) = y }

be the set of extensions of f1, . . . , fk relative to (i, x, y). This can be viewed as the set of all possible ways
to assign values to the as-yet-undefined points of the partial functions (f1, . . . , fk) subject to the constraint

that fi(x) is assigned y. Let Ansf1,...,fk

F (i, x) be the set of all y ∈ Y such that Extf1,...,fk

F (i, x, y) 6= ∅. This is
the set of possible answers to query fi(x), meaning those that have non-zero probability of occurring.

Figure 3 shows two games, one describing eager sampling and the other lazy sampling. We claim that
lazy sampling, as formally described in this game, captures the way it was done in our first example, in that
the set of possible answers is exactly the set of points that do not violate any constraint. In example 1, from
the description of F1 we see that Ansπ

F (1, x) is exactly Range(π). However, the way we sampled in example 2
fails to implement what we have now formally defined as lazy sampling, explaining why it failed. To see this
consider the stage where π1(i) = i for i ∈ {1, 2, 3} and π2(1) = 2. Then Ansπ1,π2

F (2, 2) = {3}, while in the
example we said that the candidate set from which to draw π2(2) was {1, 3}. This shows that determining
the set of possible answers purely by looking at the constraints on defined points does not work.

Now we move to saying under what conditions lazy sampling works. We say that F is admissible if for
all f1, . . . , fk ∈ P , all i ∈ [1 .. k], and all x ∈ X

∀ y1, y2 ∈ Ansf1,...,fk

F (i, x)
(
|Extf1,...,fk

F (i, x, y1)| = |Extf1,...,fk

F (i, x, y2)|
)

.
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In other words, the number of ways to extend f1, . . . , fk relative to (i, x, y) does not depend on y as long
as y is allowed, or, intuitively, any two allowed values are equi-probable as answers to an oracle query. We
say that F is admissible if it is described by an admissible constraint function F . Our result about eager
versus lazy sampling is the following. Its proof is given later.

Lemma 8 [Principle of lazy sampling] Let F 6= ∅ be an admissible set. Then games EagerF and
LazyF are equivalent.

We claim that the constraint functions F1 of example 1 is admissible, which explains why lazy sampling
worked in these cases. Verifying this claim is quite easy. Suppose π has been defined on some m− 1 points
and π(x) is the m-th query. Then for every y ∈ Range(π) there are (N −m)! possible ways to assign values
to the undefined points while setting π(x) = y, meaning |Extπ

F1
(1, x, y)| = (N−m)! for every y ∈ Ansπ

F (1, x).

Proof of Lemma 8: Suppose the adversary has made some number of oracle queries, resulting in the partial
functions f1, . . . , fk. Now it makes another query, fi(x). We consider the probability that a particular point
y ∈ Y is returned in response, and show this is the same in both games.

Any y 6∈ Ansf1,...,fk

F (i, x) has zero probability of being returned in either game. Suppose y ∈ Ansf1,...,fk

F (i, x).
Let

F(f1, . . . , fk) = { (f̄1, . . . , f̄k) ∈ F : f̄j ≥ fj (1 ≤ j ≤ k) } .

The assumption F 6= ∅ implies that Ansf1,...,fk

F (i, x) 6= ∅. Now the probability that y is returned as the
answer to query fi(x) in EagerF is

|Extf1,...,fk

F (i, x, y)|

|F(f1, . . . , fk)|
=

|Extf1,...,fk

F (i, x, y)|
∑

y′∈Ans
f1,...,fk
F

(i,x)
|Extf1,...,fk

F (i, x, y′)|

=
|Extf1,...,fk

F (i, x, y)|

|Ansf1,...,fk

F (i, x)| · |Extf1,...,fk

F (i, x, y)|
(2)

=
1

|Ansf1,...,fk

F (i, x)|
. (3)

The assumption that F is admissible justifies 2. The proof is complete because (3) is the probability that y
is returned as the answer to query fi(x) in LazyF .

4.4 Basic techniques

We briefly survey some other interesting or commonly used techniques. Use of most of these techniques is
illustrated in the examples of this paper.

Swapping dependent and independent variables. Instead of choosing a random value X
$

←{0, 1}n and then

defining Y ← X ⊕C, one can choose Y
$

← {0, 1}n and define X ← Y ⊕C. This can be generalized in natural
ways. Swapping dependent and independent variables is invariably a conservative change (it doesn’t affect
the probability that bad gets set).

Resampling idiom. Let S ⊆ T be finite, nonempty sets. Then the code fragment X
$

←S can be replaced by

the equivalent code fragment X
$

←T , if X 6∈ S then X
$

← S. We call this motif resampling. It is a basic

“idiom” employed in games, often with bad getting set, too: X
$

←T , if X 6∈ S then bad ← true, X
$

← S.
Introducing or removing resampling is invariably a conservative change.

Code motion. It is often convenient to move around statements, as an optimizing compiler might. Permissible
code motion is usually trivial to verify because games need not need to employ the programming-language
constructs (aliasing and side-effects) that complicate seeing whether or not code motion is permissible. One
particular form of code motion that is often used is to postpone until Finalize making random choices that
had been made earlier. Permissible code motion conservative.
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Marking instead of recording. Suppose that a variable π is being used in a game to record a lazily-defined
permutation: we start off with π everywhere undefined, and then we set some first value π(X1) to Y1, and
later we set some second value π(X2) to Y2, and so forth. Sometimes an inspection of the code will reveal
that all we are paying attention to is which points are in the domain of π and which points are in the range.
In such a case, we didn’t need to record the association of Yi to Xi; we could just as well have “marked” Xi

as being a now-used domain-point, and marked Yi as being a now-used range-point. Dropping the use of Yi

may now permit other changes in the code, like code motion. The method is conservative.

Derandomizing a variable. Suppose a game G chooses a variable X
$

←X and never re-defines it. We may
eliminate the sample-then-assign statement that defines X and replace all uses of X by a fixed constant X,
obtaining a new game HX. Given an adversary A, let H be HX for the lexicographically first X that maximizes
Pr[HX

A sets bad ]. We say that game H is obtained by derandomizing the variable X . It is easy to see that
Pr[GA sets bad ] ≤ Pr[HA sets bad ]; that is, derandomizing a variable is a safe transformation. Derandom-
izing a variable is reminiscent of coin-fixing, but it is simpler to explain and justify. It does nothing to
eliminate adaptivity.

Unplayable games. The games in a game chain do not normally have to be efficient: a game chain is a
thought experiment that, typically, is not performed by any user or adversary. We refer to a game that
seems to have no efficient implementation as an unplayable game. In many cases, it is perfectly fine to use
unplayable games.

4.5 Further advice

We have already given a number of pieces of advice concerning the construction of games chains, such as
(1) keeping each game-transition simple (at the expense of having more games) and (2) being particularly
cautious with the use of lazy sampling, which doesn’t apply as often as one might wish. We briefly give a few
other pieces of practical advice. (3) A game chain is most easily verified when, as much as possible, games
are typeset side-by-side and on as few pages as possible. Doing this may require special-purpose conventions
for achieving compact notation, as well as clever typesetting, but it seems to be worth it. (4) Avoid use of
else-clauses in if-statements that set bad ; they only cause confusion. (5) At least for the “major” games in
an proof chain, we suggest to number the lines and put each game in a box. (6) Avoid deeply nested for
loops and any nontrivial flow-of-control: either makes a game much harder to understand. (7) When the
analysis of a terminal game requires a case analysis, as it often seems to, it is easy to get careless by this
point in a proof and make errors, overlooking necessary cases or mishandling a case.

5 Elementary Proof for the CBC MAC

Fix n ≥ 1. A block is a string of length n, and M is a string of blocks if |M | is divisible by n. If M ∈ ({0, 1}n)∗

is a string of blocks we let ‖M‖ = |M |/n be the number of blocks in M and we let M1→i be the first i blocks
of M . By “Parse M as M1 . . .Mm” we mean to let m← ‖M‖ and then let Mi denote the i-th block of M .
If π : {0, 1}n → {0, 1}n is a function and M is a string of n-bit blocks then we define

algorithm CBCπ(M)
Parse M as M1 . . . Mm

C0 ← 0n

for i← 1 to m do Ci ← Ci−1⊕Mi

return Cm.

Let Perm(n) denote the set of all permutations on {0, 1}n and let Rand(mn, n) denote the set of all functions
from {0, 1}mn

to {0, 1}n. For m ≥ 1 and π ∈ Perm(n) let CBCm
π be the restriction of CBCπ to the domain

{0, 1}mn
. Given an algorithm A having oracle-access to a function F : {0, 1}mn → {0, 1}n let

Advcbc
n,m(A) = Pr[π

$

← Perm(n) : ACBCm
π (·)⇒ 1]− Pr[ρ

$

← Rand(mn, n) : Aρ(·)⇒ 1]

denote the advantage of A. Let

Advcbc
n,m(q) = max

{
Advcbc

n,m(A)
}
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where the maximum is over all adversaries A that ask at most q queries, regardless of oracle responses. To
avoid working out uninteresting special cases, we assume throughout that the adversary asks q ≥ 2 oracle
queries and each has m ≥ 2 blocks.

Here we use games to give a straightforward proof of the (known) m2q2/2n bound for the CBC MAC.
Namely we show:

Theorem 9 [CBC MAC, standard bound] Suppose m, q ≥ 2 and n ≥ 1. Then

Advcbc
n,m(q) ≤

m2q2

2n
.

The proof we give here is simple enough to do in a classroom lecture, and it follows rather closely the intuition
for “why” the CBC MAC is secure.

Proof of Lemma 10: Let A be an adversary that asks exactly q queries and assume without loss of
generality that it never repeats a query. Refer to games C0–C8 in Figure 4. Let us begin by explaining
the notation used there. Each query M s in the games is required to be a string of blocks, and we silently
parse Ms to Ms = Ms

1Ms
2 · · ·M

s
m where each Mi is a block. Recall that M s

1→i = Ms
1 · · ·M

s
i . The function

π : {0, 1}n → {0, 1}n is initially undefined at each point. The set Domain(π) grows as we define points π(X),
while Range(π), initially {0, 1}n, correspondingly shrinks. The table

�
stores blocks and is indexed by strings

of blocks P having at most m blocks. A random block will come to occupy selected entries
�

[X ] except
for

�
[ε], which is initialized to the constant block 0n and is never changed. The value defined (introduced at

line 306) is an arbitrary point of {0, 1}n, say 0n. Finally, Prefix(M1, . . . , Ms) is the longest string of blocks
P = P1 · · ·Pp that is a prefix of M s and is also a prefix of M r for some r < s. If Prefix is applied to a single
string the result is the empty string, Prefix(P 1) = ε. As an example, letting A, B, and C be distinct blocks,
Prefix(ABC) = ε, Prefix(ACC, ACB, ABB, ABA) = AB, and Prefix(ACC, ACB, BBB) = ε.

We briefly explain the game chain up until the terminal game. Game C0 is obtained from game C1 by
dropping the assignment statements that immediately follow the setting of bad . Game C1 is a realization
of CBC

m[Perm(n)] and game C0 is a realization of Rand(mn, n). The games use lazy sampling of a random
permutation (as described in Section 4.3) and the resampling idiom (as described in Section 4.4). Games C1
and C0 are designed so that the fundamental lemma applies, so the advantage of A in attacking the CBC
construction is at most Pr[AC0 sets bad ]. C0→C2: The C0→ C2 transition is a lossy transition that takes
care of bad getting set at line 105, which clearly happens with probability at most (0 + 1 + · · · + q)/2n ≤
0.5 q2/2n, so Pr[AC0 sets bad ] ≤ Pr[AC2 sets bad ] + 0.5 q2/2n. C2→C3: Next notice that in game C2 we
never actually use the values assigned to π, all that matters is that we record that a value had been placed
in the domain of π, and so game C3 does just that, dropping a fixed value defined = 0n into π(X) when
we want X to join the domain of π. This is the technique we called “marking instead of recording” in
Section 4.4. The change is conservative. C3→C4: Now notice that in game C3 the value returned to the
adversary, although dropped into

�
[M s

1 · · ·M
s
m], is never subsequently used in the game so we could as well

choose a random value Zs and return it to the adversary, doing nothing else with Zs. This is the change
made for game C4. The transition is conservative. C4→C5: Changing game C4 to C5 is by the coin-fixing
technique of Section 4.2. It is a particularly simple application of the technique: game C4 is oblivious since
no variables are used to form Zs-values. Coin-fixing in this case amounts to letting the adversary choose
the sequence of queries M1, . . . , Mm it asks and the sequence of answers returned to it. The queries still have
to be valid: each M s is an mn-bit string different from all prior ones: that is the query/response set. For
the worst M1, . . . , Mm, which the coin-fixing technique fixes, Pr[AC4 sets bad ] ≤ Pr[C5 sets bad ]. Remember
that, when applicable, coin-fixing is safe. C5→C6: Game C6 unrolls the first iteration of the loop at lines
503–507. This transformation is conservative. C6→C7: Game C7 is a rewriting of game C6 that omits
mention of the variables C and X , directly using values from the

�
-table instead, whose values are now

chosen at the beginning of the game. The change is conservative. C7→C8: Game C8 simply re-indexes the
for loop at line 705. The change is conservative. C8→C9: Game C9 restructures the setting of bad inside
the loop at 802–807 to set bad in a single statement. Points were into the domain of π at lines 804 and 807
and we checked if any of these points coincide with specified other points at lines 803 and 806. The change
is conservative.

At this point, we have only to bound Pr[AC9 sets bad ], knowing that We bound Pr[AC9 sets bad ] using the
sum bound and a case analysis. Fix any r, i, s, j as specified in line 902. Consider the following ways that
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On the sth query F (Ms) Game C1
100 P ← Prefix(M1, . . . , Ms)
101 C ← � [P ]
102 for j ← ‖P‖ + 1 to m do

103 X ← C ⊕Ms
j

104 C
$

←{0, 1}n ↘

105 if C∈Range(π) then bad← true, C
$

←Range(π)
106 if X∈Domain(π) then bad← true, C ← π(X)
107 π(X)← C ↗
108 � [Ms

1→j ]← C omit for Game C0
109 return C

On the sth query F (Ms) Game C2
200 P ← Prefix(M1, . . . , Ms)
201 C ← � [P ]
202 for j ← ‖P‖ + 1 to m do

203 X ← C ⊕Ms
j

204 C
$

←{0, 1}n

205 if X ∈ Domain(π) then bad← true
206 π(X)← C

207 � [Ms
1→j ]← C

208 return C

On the sth query F (Ms) Game C3
300 P ← Prefix(M1, . . . , Ms)
301 C ← � [P ]
302 for j ← ‖P‖ + 1 to m do

303 X ← C ⊕Ms
j

304 C
$

←{0, 1}n

305 if X ∈ Domain(π) then bad← true
306 π(X)← defined
307 � [Ms

1→j ]← C

308 return C

On the sth query F (Ms) Game C4
400 P ← Prefix(M1, . . . , Ms)
401 C ← � [P ]
402 for j ← ‖P‖ + 1 to m do

403 X ← C ⊕Ms
j

404 if X ∈ Domain(π) then bad← true
405 π(X)← defined

406 C ← � [Ms
1→j ]

$

←{0, 1}n

407 Zs $

←{0, 1}n

408 return Zs

500 for s← 1 to q do Game C5
501 P

s ← Prefix(M1, . . . , Ms)
502 C ← � [Ps]
503 for j ← ‖Ps‖ + 1 to m do

504 X ← C ⊕ M
s
j

505 if X ∈ Domain(π) then bad← true
506 π(X)← defined

507 C ← � [Ms
1→j ]

$

←{0, 1}n

600 for s← 1 to q do Game C6
601 P

s ← Prefix(M1, . . . , Ms)
602 C ← � [Ps]
603 X ← C ⊕ M

s
‖Ps‖+1

604 if X ∈ Domain(π) then bad← true
605 π(X)← defined
606 C ← � [Ms

1→‖Ps‖+1]
$

←{0, 1}n

607 for j ← ‖Ps‖ + 2 to m do

608 X ← C ⊕ M
s
j

609 if X ∈ Domain(π) then bad← true
610 π(X)← defined
611 C ← � [Ms

1→j ]
$

←{0, 1}n

700 for X ∈ {0, 1}+ do � [X]
$

←{0, 1}n Game C7
701 for s← 1 to q do

702 P
s ← Prefix(M1, . . . , Ms)

703 if � [Ps]⊕ M
s
‖Ps‖+1 ∈ Domain(π) then bad← true

704 π( � [Ps]⊕ M
s
‖Ps‖+1)← defined

705 for j ← ‖Ps‖+ 2 to m do

706 if � [Ms
1→j−1]⊕M

s
j ∈Domain(π) then bad← true

707 π( � [Ms
1→j−1]⊕ M

s
j )← defined

800 for X ∈ {0, 1}+ do � [X]
$

←{0, 1}n Game C8
801 for s← 1 to q do

802 P
s ← Prefix(M1, . . . , Ms)

803 if � [Ps]⊕ M
s
‖Ps‖+1 ∈ Domain(π) then bad← true

804 π( � [Ps]⊕ M
s
‖Ps‖+1)← defined

805 for j ← ‖Ps‖+ 1 to m− 1 do

806 if � [Ms
1→j ]⊕M

s
j+1∈Domain(π) then bad← true

807 π( � [Ms
1→j ]⊕ M

s
j+1)← defined

900 for X ∈ {0, 1}+ do � [X]
$

←{0, 1}n Game C9
901 for s← 1 to q do P

s ← Prefix(M1, . . . , Ms)
902 bad ← ∃(r, i) 6=(s, j)(r≤s)(i≥‖Pr‖+1)(j≥‖Ps‖+1)
903 � [Pr]⊕ M

r
‖Pr‖+1 = � [Ps]⊕ M

s
‖Ps‖+1 and r<s or

904 � [Mr
1→i]⊕ M

r
i+1 = � [Ps]⊕ M

s
‖Ps‖+1 or

905 � [Mr
1→i]⊕ M

r
i+1 = � [Ms

1→j ]⊕ M
s
j+1 or

906 � [Pr]⊕ M
r
‖Pr‖+1 = � [Ms

1→j ]⊕ M
s
j+1

Figure 4: Games used in the CBC MAC analysis. Let Prefix(M 1, . . . , Ms) be ε if s = 1, else the longest string
P ∈ ({0, 1}n)∗ s.t. P is a prefix of Ms and Mr for some r < s. In each game, Initialize sets � [ε]← 0n.
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bad can get set to true.

Line 903. We first bound Pr[
�

[Pr]⊕M
r
‖Pr‖+1 =

�
[Ps]⊕M

s
‖Ps‖+1]. If Pr = P

s = ε then Pr[
�

[Pr]⊕M
r
‖Pr‖+1 =

�
[Ps]⊕M

s
‖Ps‖+1] = Pr[Mr

1 = M
s
1] = 0 because M

r and M
s, having only ε as a common block prefix, must

differ in their first block. If P
r = ε but P

s 6= ε then Pr[
�

[Pr]⊕ M
r
‖Pr‖+1 =

�
[Ps]⊕M

s
‖Ps‖+1] = Pr[Mr

1 =
�

[Ps]⊕M
s
‖Ps‖+1] = 2−n since the probability expression involves the single random variable

�
[Ps] that is

uniformly distributed in {0, 1}n. If Pr 6= ε and P
s = ε the same reasoning applies. If Pr 6= ε and P

s 6= ε
then Pr[

�
[Pr]⊕M

r
‖Pr‖+1 =

�
[Ps]⊕M

s
‖Ps‖+1] = 2−n unless P

r = P
s, so assume that to be the case. Then

Pr[
�

[Pr]⊕ M
r
‖Pr‖+1 =

�
[Ps]⊕ M

s
‖Ps‖+1] = Pr[Mr

‖Pr‖+1 = M
s
‖Ps‖+1] = 0 because P

r = P
s is the longest block

prefix that coincides in M
r and M

s.

Line 904. We want to bound Pr[
�

[Ps]⊕ M
s
‖Ps‖+1 =

�
[Mr

1→i]⊕M
r
i+1]. If Ps = ε then Pr[

�
[Ps]⊕M

s
‖Ps‖+1 =

�
[Mr

1→i]⊕ M
r
i+1] = Pr[Ms

‖Ps‖+1 =
�

[Mr
1→i]⊕ M

r
i+1] = 2−n because it involves a single random value

�
[Mr

1→i].

So assume that P
s 6= ε. Then Pr[

�
[Ps]⊕M

s
‖Ps‖+1 =

�
[Mr

1→i]⊕M
r
i+1] = 2−n unless P

s = M
r
1→i in which case

we are looking at Pr[Ms
‖Ps‖+1 = M

r
‖Ps‖+1]. But this is 0 because P

s = M
r
1→i means that the longest prefix

that Ms shares with M
r is Ps and so M

s
‖Ps‖+1 6= M

r
‖Ps‖+1.

Line 905. What is
�

[Ms
1→j ]⊕M

s
j+1 =

�
[Mr

1→i]⊕M
r
i+1. It is 2−n unless i = j and M

s
1→j = M

r
1→i. In that case

‖Ps‖ ≥ j and ‖Pr‖ ≥ i, contradicting our choice of allowed values for i and j at line 902.

Line 906. We must bound Pr[
�

[Pr]⊕M
r
‖Pr‖+1 =

�
[Ms

1→j ]⊕M
s
j+1]. As before, this is 2−n unless Pr = M

s
1→j

but we can not have that Pr = M
s
1→j because j ≥ ‖Ps‖+ 1.

There are at most 0.5m2q2 tuples (r, i, s, j) considered at line 902 and we now know that for each of them
bad gets set with probability at most 2−n. So Pr[Game C9 sets bad ] ≤ 0.5m2q2/2n. Combining with the
loss from the C0→C2 transition we have that Pr[Game C0 sets bad ] ≤ m2q2/2n, completing the proof.

6 Improved Bound for the CBC MAC

Let us begin by explain the idea behind obtaining an improved bound on Advcbc
n,m(q). Recall that the

adversary adaptively asks for the CBC MACs of a sequence of q messages, each m blocks. As we CBC MAC
our way down the sth message M s, let Xs

i denote the input to the ith blockcipher call, and let Cs
i = π(Xs

i ).
Our previous analysis (that of Theorem 9) “gave up”—set bad—whenever there was a “nontrivial internal
collision.” By a nontrivial internal collision we mean that Xr

i = Xs
j (equivalently Cr

i = Cs
j since π is a

permutation) even though M r and Ms don’t share a common prefix of i = j blocks. To get a better bound
we set bad more stingily: we do this only when an Xs

m equals a prior Xr
i (equivalently, Cs

m equals a prior
Cr

i ). In particular, collisions between an Xr
i value and an Xs

j value will be not cause bad to be set if i and j
are less than m.

The idea is simple, but getting it to work out is tricky, and it provides a good illustration of the game-
playing technique. In general, one is often faced with a choice when doing a game-based proof: set bad
liberally and get an easier analysis for a weaker result, or set bad more reluctantly and things get harder.
The pair of proofs illustrates the dichotomy.

Notation will be as in Section 5. Additionally we will use the following definitions. M, M ′ ∈ {0, 1}nm for
some n, m ≥ 1 then we let

FCP(M, M ′) = Pr [ CBCπ(M ′) ∈ { CBCπ(M1→i) : i ∈ [1 .. m] } ∪ { CBCπ(M ′
1→i) : i ∈ [1 ..m−1] } ] ,

the probability being over π chosen at random from Perm(n). We then let

FCP(n, m) = max{ FCP(M, M ′) : M, M ′ ∈ {0, 1}nm
and M 6= M ′ } .

We refer to FCP as the full collision probability of the CBC-MAC. The following lemma reduces the problem
of bounding Advcbc

n,m(q) to bounding FCP(n, m):
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Lemma 10 Suppose m, q ≥ 2 and n ≥ 1. Then

Advcbc
n,m(q) ≤ q(q − 1) · FCP(n, m) +

mq(q + 1)

2n+1
.

Proof of Lemma 10: This uses the idea outline above. Let A be an adversary that asks at most q
queries and assume without loss of generality that it never repeats a query. Refer to games D0–D7 shown
in Figure 5. We use the same notation and conventions as in the proof of Theorem 9.

D1: We begin with game D1, which faithfully simulates the CBC MAC construction. Several techniques
are used for creating this initial game. One is the lazy sampling of a random permutation, as described in
Section 4.3. Instead of choosing a random permutation π up front, we fill in its values at random as-needed,
so as to not to create a conflict. Another idea employed is the resampling idiom, as discussed in Section 4.4.
Rather more specifically to game D1, one needs to observe that if bad = false at line 109–111 then Ĉs

m = Cs
m

and so game D1 always returns Cs
m, regardless of bad . This makes it clear that Pr[AD1⇒1] = Pr[ACBCπ⇒ ].

D0: Game D0, which omits line 110 and the statements that immediately follow the setting of bad to true

at lines 107 and 108, returns the random n-bit string Cs
m = Ĉs

m in response to each query, so Pr[AD0⇒ 1] =
Pr[Aρ⇒ ]. So Advcbc

n,m(A) = Pr[ACBCπ ⇒ ]− Pr[Aρ⇒ 1] = Pr[AD1⇒ 1]− Pr[AD0⇒ 1] ≤ Pr[AD0 sets bad ]

where the last inequality is by the fundamental lemma. Our job is to now bound Pr[AD0 sets bad ]. D0→D2:

We rewrite game D0 as game D2 by dropping variable Ĉs
m and using variable Cs

m in its place, as these are
always equal. The change from D0 to D2 is conservative: Pr[AD0 sets bad ] = Pr[AD2 sets bad ]. D2→D3:
Game D3 is a safe replacement for D2. We eliminate line 209 and then, to compensate, we set bad any time
the value would have been accessed. This accounts for the new line 303 and the new disjuncts on lines 308
and 309. D3→D4: Game D4 is a lossy modification to game D3. We remove the test at line 308. The
probability that bad is set due due to the disjuncts at line 308 is at most (m−1+(2m−1)+· · ·+(qm−1))/2n =
(m(1 + 2 + · · ·+ q)− q)/2n = (0.5mq(q + 1)− q)/2n. We therefore have, so far, that

Advcbc
n,m(A) ≤ Pr[AD3 sets bad ] ≤ Pr[AD4 sets bad ] + (0.5mq(q + 1)− q)/2n . (4)

D4→D5: The value Cs
m returned to the adversary in response to a query in D4 is never referred to again in

code responding to any later query, and thus has no influence on the game and the setting of bad . Accordingly,
we could think of these values as being chosen up-front and being provided to the adversary. In that case,
the adversary can also determine, and fix, an optimal choice of its own coins (and hence queries) to maximize
the probability that bad gets set. Thus there are query values M1, . . . , Mq that are fixed but distinct m-block
strings, referred to in game D5 such that Pr[AD4 sets bad ] ≤ Pr[AD5 sets bad ]. In Section 4.2 we generalize
this argument into a coin-fixing technique that works under the condition that the starting game is oblivious.
D5→D6: Game D6 is a conservative replacement of game D5 employing a postponed evaluation of bad and
an early selection of π. D6→D7: The next step is a multiplicatively lossy replacement of game D6. In
game D6, some pair r, s must contribute at least an average amount to the probability that bad gets set.
Namely, for any r, s ∈ [1 .. q] where r 6= s define

bad r,s = (Xs
m = Xr

i for some i ∈ [1 ..m]) or (Xs
m = Xs

i for some i ∈ [1 ..m− 1])

and note that bad is set at line 607 iff bad r,s is true for some r 6= s. We conclude that there must be an
r 6= s such that Pr[D6 sets bad r,s] ≥ (1/q(q − 1)) Pr[D6 sets bad ]. Fixing such an r, s and renaming M = M

r

and M
′ = M

s we arrive at game D7 knowing that

Pr[D4 sets bad ] ≤ Pr[D6 sets bad ] ≤ q(q − 1) · Pr[D7 sets bad ] . (5)

Since the π chosen in D7 is a permutation, line 708 is equivalent to

bad ← C ′
m ∈ {C1, . . . , Cm, C ′

1, . . . , C
′
m−1}.

Thus Pr[D7 sets bad ] = FCP(M, M′) ≤ FCP(n, m). Putting all the above together concludes the proof of the
lemma.

Lemma 10 reduces the task of bounding Advcbc
n,m(q) to bounding FCP(n, m). The latter is accomplished by

the following lemma of Pietrzak [Pi04], in turn based on techniques of [DGHKR04]:

Lemma 11 [Pi04] There is a constant d such that for any m, n ≥ 1 with m ≤ 2n−2 we have:

FCP(n, m) ≤
4m

2n
+

d m4

22n
. (6)
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On the sth query F (Ms) Game D1
100 Cs

0 ← 0n

101 for i← 1 to m− 1 do

102 Xs
i ← Cs

i−1 ⊕Ms
i

103 if Xs
i ∈ Domain(π) then Cs

i ← π(Xs
i )

104 else π(Xs
i )← Cs

i
$

←Range(π)
105 Xs

m ← Cs
m−1⊕Ms

m

106 Cs
m

$

←{0, 1}n, bCs
m ← Cs

m ↘

107 if Cs
m∈Range(π) then bad← true, Cs

m
$

←Range(π)
108 if Xs

m∈Domain(π) then bad← true, Cs
m←π(Xs

m)
109 π(Xs

m)← Cs
m ↗

110 if bad then return Cs
m ← omit for Game D0

111 return bCs
m

On the sth query F (Ms) Game D2
200 Cs

0 ← 0n

201 for i← 1 to m− 1 do

202 Xs
i ← Cs

i−1 ⊕Ms
i

203 if Xs
i ∈ Domain(π) then Cs

i ← π(Xs
i )

204 else π(Xs
i )← Cs

i
$

←Range(π)
205 Xs

m ← Cs
m−1⊕Ms

m

206 Cs
m

$

←{0, 1}n

207 if Cs
m ∈ Range(π) or

208 Xs
m ∈ Domain(π) then bad ← true

209 π(Xs
m)← Cs

m

210 return Cs
m

On the sth query F (Ms) Game D3
300 Cs

0 ← 0n

301 for i← 1 to m− 1 do

302 Xs
i ← Cs

i−1 ⊕Ms
i

303 if Xs
i = Xr

m for an r < s then bad ← true
304 if Xs

i ∈ Domain(π) then Cs
i ← π(Xs

i )

305 else π(Xs
i )← Cs

i
$

←Range(π)
306 Xs

m ← Cs
m−1⊕Ms

m

307 Cs
m

$

←{0, 1}n

308 if Cs
m ∈ Range(π) or Cs

m = Cr
m for an r < s or

309 Xs
m ∈ Domain(π) or Xs

m = Xr
m for an r < s

310 then bad ← true
311 return Cs

m

On the sth query F (Ms) Game D4
400 Cs

0 ← 0n

401 for i← 1 to m− 1 do

402 Xs
i ← Cs

i−1 ⊕Ms
i

403 if Xs
i = Xr

m for an r < s then bad ← true
404 if Xs

i ∈ Domain(π) then Cs
i ← π(Xs

i )

405 else π(Xs
i )← Cs

i
$

←Range(π)
406 Xs

m ← Cs
m−1⊕Ms

m

407 if Xs
m ∈ Domain(π) or Xs

m = Xr
m for an r < s

408 then bad ← true

409 Cs
m

$

←{0, 1}n

410 return Cs
m

500 for s← 1 to q do Game D5
501 Cs

0 ← 0n

502 for i← 1 to m− 1 do

503 Xs
i ← Cs

i−1⊕ M
s
i

504 if Xs
i = Xr

m for an r < s then bad ← true
505 if Xs

i ∈ Domain(π) then Cs
i ← π(Xs

i )

506 else π(Xs
i )← Cs

i
$

←Range(π)
507 Xs

m ← Cs
m−1 ⊕ M

s
m

508 if Xs
m ∈ Domain(π) or Xs

m = Xr
m for an r < s

509 then bad ← true

600 π
$

← Perm(n) Game D6
601 for s ∈ [1 .. q] do

602 Cs
0 ← 0n

603 for i← 1 to m− 1 do

604 Xs
i ← Cs

i−1⊕ M
s
i

605 Cs
i ← π(Xs

i )
606 Xs

m ← Cs
m−1⊕ M

s
m

607 bad ← (∃(r, i) 6= (s,m)) [Xs
m = Xr

i ]

700 π
$

← Perm(n) Game D7
701 C0 ← C′

0 ← 0n

702 for i← 1 to m do

703 Xi ← Ci−1⊕ Mi

704 Ci ← π(Xi)
705 for i← 1 to m do

706 X ′
i ← C′

i−1⊕ M
′
i

707 C′
i ← π(X ′

i)
708 bad ← X ′

m ∈ {X1, . . . , Xm, X ′
1, . . . , X

′
m−1}

Figure 5: Games D0–D7 used in the proof of Lemma 10.
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Combining the above with Lemma 10 yields the following:

Theorem 12 [CBC MAC, improved bound] There is a constant c such that for any m, q, n with
m, q ≥ 2, n ≥ 1 and m ≤ 2n−2:

Advcbc
n,m(q) ≤

c mq2

2n
·

(
1 +

m3

2n

)
.

Furthermore if m ≤ N1/3 then

Advcbc
n,m(q) ≤

2c mq2

2n
.

Note the condition m ≤ 2n/3 is not a significant restriction in practice. When n = 128, it only says messages
must be no longer than 242 bits, which is about 549 Gbytes. When n = 64 it says that messages should be
no longer than 221 bits, which is about 209 Mbytes, and this too is quite large.

We conclude this section with a discussion of some of the background to Lemma 11. Towards this end
we need some more definitions. Let M, M ′ ∈ ({0, 1}n)+ be strings of blocks. Then let

CP(M, M ′) = Pr [CBCπ(M) = CBCπ(M ′) ] ,

the probability being over π chosen at random from Perm(n). Also let

CP(n, m) = max{ CP(M, M ′) : M, M ′ ∈ ({0, 1}n)+, ‖M‖ ≤ m, ‖M ′‖ ≤ m and M 6= M ′ }

CP
∗(n, m) = max{ CP(M, M ′) : M, M ′ ∈ {0, 1}mn and M 6= M ′ } .

We refer to CP as the collision probability function of the CBC-MAC. An easy observation is the following:

Lemma 13 Suppose m, n ≥ 1. Then FCP(n, m) ≤ (2m− 1) · CP(n, m).

Lemma 13 reduces the problem of bounding FCP(n, m) to bounding CP(n, m). Now, [DGHKR04, Lemma
3] says that there is a constant d such that

CP
∗(n, m) ≤

1

2n
+

d m2

22n
+

d m6

23n

for any n, m ≥ 1. We observe that if the same bound (possibly up to a constant) was true for CP(n, m) then
via Lemma 13 it would imply that there is a constant c such that

FCP(n, m) ≤
c m

2n
+

c m3

22n
+

c m7

23n
,

which is (asymptotically) better than (6) as long as m ≤ N1/3 and would yield the corresponding improve-
ment to Theorem 12. However, it is not known at this time whether the bound of [DGHKR04] on CP

∗(n, m)
extends to CP(n, m). Pietrzak [Pi04] instead obtains Lemma 11 directly based on claims and techniques
in [DGHKR04].

7 OAEP

We recall the needed background for the asymmetric encryption scheme OAEP [BR94]. A trapdoor-
permutation generator with associated security parameter k is a randomized algorithm F that takes a
number, the security parameter, as input and returns a pair (f, f−1) where f : {0, 1}k → {0, 1}k is (the
encoding of) a permutation and f−1 is (the encoding of) its inverse. Let

Advowf
F (I) = Pr[(f, f−1)

$

←F(k); x
$

←{0, 1}k : I(f, f(x)) = x]

be the advantage of adversary I in inverting F . Let ρ < k be an integer. The key-generation algorithm
of asymmetric encryption scheme OAEP

ρ[F ] is simply F , meaning it returns f as the public key and f−1

as the secret key. The encryption and decryption algorithms have oracles G : {0, 1}ρ → {0, 1}k−ρ and

H : {0, 1}k−ρ → {0, 1}ρ and work as follows (for the basic, no-authenticity scheme):
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algorithm EG,H
f (M) /* M ∈ {0, 1}k−ρ */

R
$

←{0, 1}ρ, S ← G(R)⊕M, T ← H(S)⊕R

Y ← f(S ‖ T )
return Y

algorithm DG,H

f−1 (Y ) /* Y ∈ {0, 1}k */

X ← f−1(Y ), S ← X[1 .. k − ρ], T ← X[k −ρ+1 .. k]
R← H(S)⊕T, M ← G(R)⊕S

return M

Security of an asymmetric encryption scheme AE = (F , E ,D) is defined via the following game. Keys (f, f−1)
are chosen by running F , and a bit b is chosen at random. Adversary A is given input f and a left-or-right

oracle E(·, ·) which on input a pair M0, M1 of equal-length messages computes Y
$

←Ef (Mb) and returns Y .

The output of adversary is a bit b′ and Advfg-cpa
AE

(A) = 2 Pr[b′ = b]− 1.

Theorem 14 Let A be an adversary with running time tA, making at most qG queries to its G oracle, qH

to its H oracle, and exactly one query to its left-or-right oracle. Then there is an adversary I with running
time tI such that

Advowf
F (I) ≥

1

2
Advfg-cpa

OAEPρ[F ](A) −
2qG

2ρ
−

qH

2k−ρ
and tI ≤ tA + c qGqH tF

where tF is the time for one computation of a function output by F and c is an absolute constant depending
only on details of the model of computation.

Proof of Theorem 15: The proof is based on games shown in Figures 6 and 7. As usual, we have striven
to makes steps between adjacent games small at the cost of a somewhat longer game chain, a tradeoff that
we believe increases easy verifiability. For the analysis let pi = Pr[ out = b in Ri ] (0 ≤ i ≤ 5). R0: Game R0
perfectly mimics the game defining the security of OAEP

ρ[F ]. Thus

1

2
+

1

2
Advfg-cpa

OAEPρ[F ](A) = p0 = p1 + (p0 − p1) ≤ p1 + Pr[R0 sets bad ] ,

the last step by the fundamental lemma. Since game R0 chooses R∗, S∗ at random, Pr[R0 sets bad ] ≤
qG/2ρ + qH/2k−ρ. R2: Game R2 differs from game R1 only in the setting of bad , so p1 = p2, and using the
fundamental lemma again we have

p1 = p2 = p3 + (p2 − p3) ≤ p3 + Pr[R3 sets bad ] .

R4: In game R4 the string GR∗ is chosen but not referred to in responding to any oracle queries of the
adversary. Thus R4 is a conservative replacement for R3, p3 = p4, and Pr[R3 sets bad ] = Pr[R4 sets bad ].
However, the bit b is not used in R4, and hence p4 = 1/2. In summary

p3 + Pr[R3 sets bad ] = p4 + Pr[R4 sets bad ] =
1

2
+ Pr[R4 sets bad ] .

Putting all this together we have
1

2
Advfg-cpa

OAEPρ[F ](A)−
qG

2ρ
−

qH

2k−ρ
≤ Pr[R4 sets bad ] . (7)

We proceed to upper bound the right-hand-side of the above. We have

Pr[R4 sets bad ] = Pr[R5 sets bad ] ≤ qG/2ρ + Pr[A0 sets bad ] .

Next we have a series of conservative changes, giving A0, A1, A2, A3, A4, A5 leading to

Pr[A0 sets bad ] = Pr[A5 sets bad ] ≤ Pr[A6 sets bad ] = Pr[A7 sets bad ] .

To conclude the proof we design I so that

Pr[A7 sets bad ] ≤ Advowf
F (I) . (8)

On input f, Y ∗, inverter I runs A on input public key f , responding to its oracle queries as follows.

On query E(M0, M1) Inverter I

000 return Y ∗

On query G(R) On query H(S)

010 if ∃ S s.t. f(S ‖H[S]⊕R) = Y ∗ then 020 return H[S]
$

←{0, 1}ρ

bad ← true, S∗ ‖ T ∗ ← S ‖H[S]⊕R

011 return G[R]
$

←{0, 1}k−ρ
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On query E(M0, M1) Game R0

000 R∗ $

←{0, 1}ρ 001 GR∗ $

←{0, 1}k−ρ
002 if G[R∗] then bad ← true, GR∗ ← G[R∗]

003 S∗ ← GR∗⊕Mb 004 HS∗ $

←{0, 1}ρ 005 if H[S∗] then bad ← true, HS ∗ ← H[S∗]
006 T ∗ ← R∗⊕HS∗ 007 return Y ∗ ← f(S∗ ‖ T ∗) ↓ Eliminate 002, 005 with loss qG/2ρ + qH/2k−ρ

On query G(R) On query H(S)
010 if R = R∗ then return G[R∗]← GR∗ 020 if S = S∗ then return H[S∗]← HS∗

011 return G[R]
$

←{0, 1}k−ρ
021 return H[S]

$

←{0, 1}ρ

On query E(M0, M1) Game R1

100 R∗ $

←{0, 1}ρ 101 GR∗ $

←{0, 1}k−ρ
102 S∗ ← GR∗⊕Mb 103 HS∗ $

←{0, 1}ρ

104 T ∗ ← R∗⊕HS∗ 105 return Y ∗ ← f(S∗ ‖ T ∗) ↓ Introduce bad at 110

On query G(R) On query H(S)
110 if R = R∗ then return G[R∗]← GR∗ 120 if S = S∗ then return H[S∗]← HS∗

111 return G[R]
$

←{0, 1}k−ρ
121 return H[S]

$

←{0, 1}ρ

On query E(M0, M1) Game R2

200 R∗ $

←{0, 1}ρ 201 GR∗ $

←{0, 1}k−ρ
202 S∗ ← GR∗⊕Mb 203 HS∗ $

←{0, 1}ρ

204 T ∗ ← R∗⊕HS∗ 205 return Y ∗ ← f(S∗ ‖ T ∗) ↓ Eliminate statement after bad, apply fund. lemma

On query G(R) On query H(S)
210 if R = R∗ then bad ← true, return G[R∗]← GR∗ 220 if S = S∗ then return H[S∗]← HS∗

211 return G[R]
$

←{0, 1}k−ρ
221 return H[S]

$

←{0, 1}ρ

On query E(M0, M1) Game R3

300 R∗ $

←{0, 1}ρ 301 GR∗ $

←{0, 1}k−ρ
302 S∗ ← GR∗⊕Mb 303 HS∗ $

←{0, 1}ρ

304 T ∗ ← R∗⊕HS∗ 305 return Y ∗ ← f(S∗ ‖ T ∗) ↓ Swap rand/ind vars at 301, 302. Eliminate unused var

On query G(R) On query H(S)
310 if R = R∗ then bad ← true 320 if S = S∗ then return H[S∗]← HS∗

311 return G[R]
$

←{0, 1}k−ρ
321 return H[S]

$

←{0, 1}ρ

On query E(M0, M1) Game R4

400 R∗ $

←{0, 1}ρ 401 S∗ $

←{0, 1}k−ρ
402 HS∗ $

←{0, 1}ρ 403 T ∗ ← R∗⊕HS∗

404 return Y ∗ ← f(S∗ ‖ T ∗)

On query G(R) On query H(S)
410 if R = R∗ then bad ← true 420 if S = S∗ then return H[S∗]← HS∗

411 return G[R]
$

←{0, 1}k−ρ
421 return H[S]

$

←{0, 1}ρ ↓ Rewrite 410, breaking into two cases

On query E(M0, M1) Game R5

500 R∗ $

←{0, 1}ρ 501 S∗ $

←{0, 1}k−ρ
502 HS∗ $

←{0, 1}ρ 503 T ∗ ← R∗⊕HS∗

504 return Y ∗ ← f(S∗ ‖ T ∗)

On query G(R) On query H(S)
510 if H[S∗] and R = R∗ then bad ← true 520 if S = S∗ then return H[S∗]← HS∗

511 if ¬H[S∗] and R = R∗ then bad ← true 521 return H[S]
$

←{0, 1}ρ

512 return G[R]
$

←{0, 1}k−ρ ↙↘ Separate analysis for bad set at 510 (game A0) and 511 (game B0)

Figure 6: Games used in the analysis of OAEP. Initialize is the same in all of these games: (f, f−1)
$

←F(k), b
$

←{0, 1},
return inp ← f . Finalize is also the same: return out = b.
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On query E(M0, M1) Game A0

000 R∗ $

←{0, 1}ρ 001 S∗ $

←{0, 1}k−ρ
002 HS∗ $

←{0, 1}ρ 003 T ∗ ← R∗⊕HS∗

004 return Y ∗ ← f(S∗ ‖ T ∗) ↓ Swap rand/ind vars at 002, 003

On query G(R) On query H(S)
010 if H[S∗] and R = R∗ then bad ← true 020 if S = S∗ then return H[S∗]← HS∗

011 return G[R]
$

←{0, 1}k−ρ
021 return H[S]

$

←{0, 1}ρ

On query E(M0, M1) Game A1

100 R∗ $

←{0, 1}ρ 101 S∗ $

←{0, 1}k−ρ
102 T ∗ $

←{0, 1}ρ 103 HS∗ ← R∗⊕T ∗

104 return Y ∗ ← f(S∗ ‖ T ∗) ↓ Eliminate use of HS∗ at 120 and its defn at 103

On query G(R) On query H(S)
110 if H[S∗] and R = R∗ then bad ← true 120 if S = S∗ then return H[S∗]← HS∗

111 return G[R]
$

←{0, 1}k−ρ
121 return H[S]

$

←{0, 1}ρ

On query E(M0, M1) Game A2

200 S∗ $

←{0, 1}k−ρ
201 T ∗ $

←{0, 1}ρ 202 R∗ $

←{0, 1}ρ 203 return Y ∗ ← f(S∗ ‖ T ∗)

On query G(R) On query H(S) ↓ Defer selection of R∗ until needed

210 if H[S∗] and R = R∗ then bad ← true 220 if S = S∗ then return H[S∗]← R∗⊕T ∗

211 return G[R]
$

←{0, 1}k−ρ
221 return H[S]

$

←{0, 1}ρ

On query E(M0, M1) Game A3

300 S∗ $

←{0, 1}k−ρ
301 T ∗ $

←{0, 1}ρ 302 return Y ∗ ← f(S∗ ‖ T ∗)

On query G(R) On query H(S) ↓ Use optimistic sampling for 320–321

310 if H[S∗] and R = R∗ then bad ← true 320 if S = S∗ then R∗ $

←{0, 1}ρ, return H[S∗]←R∗⊕T ∗

311 return G[R]
$

←{0, 1}k−ρ
321 return H[S]

$

←{0, 1}ρ

On query E(M0, M1) Game A4

400 S∗ $

←{0, 1}k−ρ
401 T ∗ $

←{0, 1}ρ 402 return Y ∗ ← f(S∗ ‖ T ∗)

On query G(R) On query H(S)

410 if H[S∗] and R = R∗ then bad ← true 420 H[S]
$

←{0, 1}ρ

411 return G[R]
$

←{0, 1}k−ρ
421 if S = S∗ then R∗ ← H[S∗]⊕T ∗

422 return H[S] ↓ Replace R∗ at 410 by its defn and simplify

On query E(M0, M1) Game A5

500 S∗ $

←{0, 1}k−ρ
501 T ∗ $

←{0, 1}ρ 502 return Y ∗ ← f(S∗ ‖ T ∗)

On query G(R) On query H(S)

510 if R = H[S∗]⊕T ∗ then bad ← true 520 return H[S]
$

←{0, 1}ρ

511 return G[R]
$

←{0, 1}k−ρ ↓ Eliminate S∗ at 510

On query E(M0, M1) Game A6

600 S∗ $

←{0, 1}k−ρ
601 T ∗ $

←{0, 1}ρ 602 return Y ∗ ← f(S∗ ‖ T ∗)

On query G(R) On query H(S)

610 if ∃ S s.t. f(S ‖ T ∗) = Y ∗ and R = H[S]⊕T ∗ then bad ← true 620 return H[S]
$

←{0, 1}ρ

611 return G[R]
$

←{0, 1}k−ρ ↓ Eliminate T ∗ at 610. Replace 600–602 by equivalent

On query E(M0, M1) Game A7

700 return Y ∗ $

←{0, 1}k

On query G(R) On query H(S)

710 if ∃ S s.t. f(S ‖H[S]⊕R) = Y ∗ then bad ← true 720 return H[S]
$

←{0, 1}ρ

711 return G[R]
$

←{0, 1}k−ρ
Bound bad getting set by Adv

owf
F (I) 2

Figure 7: Games used in the analysis of OAEP. Initialize is the same in all of these games: (f, f−1)
$

←F(k), b
$

←{0, 1},
return inp ← f . Finalize is also the same: return out = b.
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On query E(M0, M1) Game B0

000 R∗ $

←{0, 1}ρ 001 S∗ $

←{0, 1}k−ρ
002 HS∗ $

←{0, 1}ρ 003 T ∗ ← R∗⊕HS∗

004 return Y ∗ ← f(S∗ ‖ T ∗) ↓ Eliminate 020: coins that set bad never have S = S∗

On query G(R) On query H(S)
010 if ¬H[S∗] and R = R∗ then bad ← true 020 if S = S∗ then return H[S∗]← HS∗

011 return G[R]
$

←{0, 1}k−ρ
021 return H[S]

$

←{0, 1}ρ

On query E(M0, M1) Game B1

100 R∗ $

←{0, 1}ρ 101 S∗ $

←{0, 1}k−ρ
102 HS∗ $

←{0, 1}ρ 103 T ∗ ← R∗⊕HS∗

104 return Y ∗ ← f(S∗ ‖ T ∗)

On query G(R) On query H(S)

110 if ¬H[S∗] and R = R∗ then bad ← true 120 return H[S]
$

←{0, 1}ρ

111 return G[R]
$

←{0, 1}k−ρ ↓ Conservative replacement of 110: drop first conjunct

On query E(M0, M1) Game B2

200 R∗ $

←{0, 1}ρ 201 S∗ $

←{0, 1}k−ρ
202 T ∗ $

←{0, 1}k 203 return Y ∗ ← f(S∗ ‖ T ∗)

On query G(R) On query H(S)

210 if R = R∗ then bad ← true 220 return H[S]
$

←{0, 1}ρ

211 return G[R]
$

←{0, 1}k−ρ
bad set with prob at most qR/2ρ

2

Figure 8: Games used in the analysis of OAEP, continued. Initialize is the same in all of these games: (f, f−1)
$

←F(k),

b
$

←{0, 1}, return inp ← f . Finalize is also the same: return out = b.

When A halts, inverter I returns S∗ ‖ T ∗ if this has been defined. By comparison with A7 we see that (8)
is true, completing the proof.
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A Fixing the PRP/PRF Switching Lemma without games

Let adversary A and other notation be as in Section 2, where we showed by example that if the number of
oracle queries made by A depends on the answers it receives in response to previous queries, then (1) may
not hold. Here we show that if the number of oracle queries made by A is always exactly q—meaning the
number of queries is this value regardless of A’s coins and the answers to the oracle queries—then (1) is true.

Note that given any adversary A1 making at most q queries, it is easy to modify it to an A2 that has the
same advantage as A1 but makes exactly q oracle queries. (A2 will run A1 until it halts, counting the number
of oracle queries the latter makes. Calling this number q1, it now makes some q − q1 oracle queries, whose
answers it ignores, outputting exactly what A1 outputs.) In other words, if an adversary is assumed to make
at most q queries, one can assume wlog that the number of queries is exactly q. This means that one can
in fact obtain a correct proof of the PRP/PRF Switching Lemma based on (1). The bug we highlighted in
Section 2 thus amounts to having claimed (1) for all A making at most q queries rather than those making
exactly q queries.

Let us now show that if the number of oracle queries made by A is always exactly q then (1) is true.
Since A is computationally unbounded, we may assume wlog that A is deterministic. We also assume it
never repeats an oracle query. Let V = ({0, 1}n)q and for a q-vector a ∈ V let a[i] ∈ {0, 1}n denote the i-th
coordinate of a, 1 ≤ i ≤ q. We can regard A as a function f : V → {0, 1} that given a q-vector a of replies
to its oracle queries returns a bit f(a). Let a denote the random variable that takes value the q-vector of
replies returned by the oracle to the queries made by A. Also let

dist = { a ∈ V : a[1], . . . , a[n] are distinct }

one = { a ∈ V : f(a) = 1 } .

Let Pr rand [ · ] denote the probability in the experiment where ρ
$

←Rand(n). Then

Pr [ Aρ⇒ 1 | Dist ] = Pr rand [ f(a) = 1 | a ∈ dist ] =
Pr rand [ f(a) = 1 ∧ a ∈ dist ]

Pr rand [ a ∈ dist ]

=

∑
a∈dist∩one Pr rand [ a = a ]∑

a∈dist Pr rand [ a = a ]
=

∑
a∈dist∩one 2−nq

∑
a∈dist 2−nq

=
|dist ∩ one|

|dist|
.

On the other hand let Prperm [ · ] denote the probability in the experiment where π
$

← Perm(n). Then

Pr [ Aπ ⇒ 1 ] = Prperm [ f(a) = 1 ] =
∑

a∈dist∩one

Prperm [ f(a) = a ]

=
∑

a∈dist∩one

q−1∏

i=0

1

2n − i
=

∑

a∈dist∩one

1

|dist|
=
|dist ∩ one|

|dist|
.

B Bug in [JJV02] and an Earlier Draft of This Paper

An earlier version of the current paper (draft 0.2 and before) had what was, in effect, a buggy proof for
FCP(n, m) ≤ cmq2/2n. Our proof had been adapted from a similar bound on CP(n, m) claimed in [JJV02,
Appendix A]. Shortly after releasing Draft 0.2 to ePrint, Krzysztof Pietrzak noticed the bug in our work and
pointed it out to us. We realized that the analagous bug was already in [JJV02]. It turns out that Pietrzak
had discovered some time back.

The problem in [JJV02, Appendix A] can be explained like this. In that paper there is a counting
argument to show that, when M, M ′ ∈ ({0, 1}n)+ are distinct messages, the number of permutations π such
that CBCπ(M) = CBCπ(M ′) is small. To show this the authors describe a procedure that is intended to
“oversample” in the space of all permutation Perm(n)—the procedure is supposed to choose a permutation π
from a multiset of permutations P that includes one copy of each permutation from Perm(n) and has overall
size (counting multiplicites) of no more than twice the size of Perm(n). When the sampling procedure
selects a permutation from P it also computes a flag bad that indicates if the given permutation causes
a collision between M and M ′. Because of the parsimoneous use of coins, the probablity of a collision
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between M and M ′ by a random element of Perm(n) can’t be more than twice the probablity of a collision
being induced by a random element of P , and the latter turns out to be easy to calculate. Unfortunately,
the sampling procedure, as written, did not sample every permutation from Perm(n). In one particular
case, when the partially-defined permutation π is already defined at input Im−1 and the target value X has
already been used within the range of π, the sampling procedure makes a specific extension of π (assigning
the smallest unused range point to the smallest unused domain point). No coins can be flipped in this case
without going over the “budget” of alloted coins. The concrete result is that not all permutations Perm(n)
will appear in P .

In our own buggy proof we had made the “dual” error to this, having a particular case in which the
number of coin tosses was well more than 2N !. There is no clear way to eliminate one of these problems
without introducing the other. It is now our belief that the idea employed in [JJV02] to bound CP(n, m) is
fatally flawed, and completely different techniques must be used to bound it and FCP(n, m). Such techniques
are embodied in the result of [DGHKR04].
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